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It is shown that the d’dlambert properties of functions of celestial mechan- 
ics are the corollary of holomorphy is an unbounded region and of some 
functional relationship. The radius of convergence of related power ex- 

pansions is determined by the region size. 

In the construction of theories of motion of planets and satellites considerable use 
is made of the d’Alambert characteristic (see [l]), which is understood to be the property 
of coefficients of trigonometric series which makes it possible to substitute for it power 
series ,T = re’* and !, = rem”, where v is the angle variable and r is the eccentri- 
city or declination. It is reasonable to pose the problem of determination of the func- 
tional properties of the sum, which have as a consequence the indicated characteristic 

of coefficients. As far as the author is aware no attempts were made to solve that prob- 
lem, apparently owing to the following causes. First, in the case of the usual in prac- 
tice formal constructions (without convergence test and estimate of the reminder) it is 
sufficient to formally determine the d’Alambert characteristics, without excluding even 

series that are everywhere divergent. Second, the standard region of variation of variab- 
les r and ‘P , which is the Cartesian product of circle 1 r 1 < R by the band 1 Im cp 1 < 
CD is not suitable for analyzing d’Alambert properties. In fact, in variables 5, !/ the 
coordinate origins = u = 0 is on the boundary, since any sphere as small as desired 

1 J 1’ -I- I II 1” < e contains points with arbitrary large I Im 9 I. 
In the present paper a method is presented for reducing the d’Alambert property to 

a certain functional property. The key feature is the determination of a suitable region 
of variation of variables r and cp. As an example of application of this method, esti- 

mates of the common term and of the remainder of the related series, are obtained. 

Investigation of the d’ Alambert characteristic directly affects the question of cor- 
relating Cartesian phase coordinates 5, !/ and polar r, cp in various problems of dynam- 
ics, as for instance in the problem of solving a system of differential equations in the 
equilibrium neighbourhood of periodic or quasi-periodic motion. Depending on the prob- 
lem features and preference of the researcher Cartesian or polar coordinates are used. 

Formal solutions are usually the same, but the evaluation of applicability regions can 

be substentially different. 
The investigations presented in this paper imply the isomorphism of ~01ution~ and 

related regions in both coordinate systems, when certain conditions, conveniently called 

d’Alambert conditions, are satisfied. Cbtained results can be applied to numerous prob- 
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lems, for instance, of estimating coefficients of expansion of per~rb~ng functions in the 
problem of several bodies (*). More interesting is the application to the problem of quasi- 
periodic solutions of the canonical system of equations with the ~am~ltonian ffO \p) -i-- 

@II (P. 4) (in generally accepted no;ation) in the case of limit degeneration of Ho 

typical for problems of celestial mechanics [2]. The sequence of contracting regions [2] 
in which is determined the canonical system 

II,i; f&Q) .’ j’I;;ll,k (/I;;, ‘ih.) (/l& + 0) 

after the k-th substitution of variables, may be modified so that r = (1 is an internal 

point that does not protrude at the first step. Here r corresponds to the variable or group 
of variables p with which the limit degeneration takes place. 

The determination of the estimate of the perturbing function or the analysis of con- 

tracting regions is too cumbersome to be used as an example for the theorems of this work. 
Two simple exampies will be given instead. The second of these shows that the exten- 
sion of derived results to the case of more than two dimensions is hardly of any interest; 

in problems of dynamics the variables that show the d’Alambert characteristic is usually 

of two kinds: action and angle. 
Let r and ‘p vary in the multiply connected region D, of space cV2, defined 

by the inequali~ 

(j < ( f” 1 &I ( fi (cc =-= II t i(‘l 

where H is an arbitrary positive number. Region D, differs from the simply connec- 

ted region D,: 1 I‘ 1 eW ( A by the absence of the plane r := (3. It can be shown 

that the mapping of L), by the entire functions 

It: = r&P Y = re-iP (1) 7 

on E,: 0 < 1 5 1 ( R, 0 < 1 y / ( R is multi-sheeted. The conventional iden- 

tification (r, 9) - (r, cp -+ 23~) results in a two-sheeted mapping. The identifica- 

tion 

(?-, cp) - f-r, cp + n> (2) 

intrinsic to polar coordinates, implies univalence. 
Thus the entire functions (1) map one-to-one 1) ,O onto E,, Here D,’ is the fac- 

tor set of L), with respect to the equivalence (2). 
We call $ bounded d*Alambert fi- function, if it is holomorphic, and bounded 

in ~9,~ and satisfies the relationship 

f (r, cp) = I c-r, cp -t n) 
(3) 

Region L), differs from the singly connected region LIZ by the fine set r = 0. 
By the theorem on the obliteration of singularities (see [3]) the d’ Alambert function is 

(*) Editor’s note. Commonly referred to as the three body problem or the ?d 
body problem. 
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~olomorp~c and bounded in L>,. 
The composition f” (s, y) = f (7‘ (5, Y), Cp (Z, Y)) is obviously holomorphic 

and bounded in E, by the same theorem on the whole bicircle Es: X 1 __.= R, 

IYIKR. 
Conversely, let f * be holomorphic and bounded in E, and consequently, also, 

on E,. By the substitution of variables (1) transforms it into a bounded d’ Alambert R- 
function in D,’ and consequently in D,O. It is evidently sufficient to specify boun - 
dedness only in the neighbourhood of singular sets r = 0 or my = 0 (here singulari- 

ty means violation of the one-to-one mapping of (1)). We call a function d’tllambert 
R- function if it is a d’Alambert R’-function for an R'<.R. 

The fundamental result is formulated as follows: the substitution of variables (1) 
transforms the d’Alambert B-function f into function f* holomorphic on the bicir- 

cle Es, and conversely. 
Let us investigate some of properties of the d’Alambert R- functions. 
Owing to its periodicity function f expands into Fourier series 

f (I’, cp) = 5 c, (I”) einv 
--m 

whose half-ads convergence depends on r as 

IQl<lnlRlrl 

which implies that for bounded functions c, = 0 ( 1 T ]lnl), We denote 

(4) 

(5) 

(61 

Since c, can be represented by an integral along the real axis, c,, are holomorphic 

in circle 1 r j ( R and bounded by the number Mr. 
Lemma, If function g is holomorphic in circle i r [ ( K , bounded by num- 

ber G ) and when r + 0 is of order 1 r 1” , then the exact estimate 

(7) 
I 6 (4 I < G I r t’ R 1” 

is valid in that circle. 
In fact, if the inequality is postulated for n = 0 , it is transformed into the 

Schwartz lemma when IZ = 1 (see [3]). Extension to an arbitrary ?Z is trivial, hence 
it is possible to call the formulated statement the Schwartz lemma independently of the 

values of n. 
The obtained properties of coefficients C,, and the Schwartz lemma imply that 

1 c, (r) 1 < Ml 1 r i R 11”’ (8) 
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from which follows the analog of the Cauchy-Hadamard formula 

(9) 

f&lationship (8) implies that GI (I”) = (~-f)~Cti (- r)+ hence with allowance for 

(8), we have 

c,b (r) = ()* f R)@i (T, (9) (10) 

where functions o,, in the circle I’r 1 < R are holomorphic and bounded by the num- 
ber Mr. 

Let us estimate the totality of coefficients with symmetric indices. We fix rl and 
r0 and denote 

CT1 (1”rJ) = 1 &I 6.0) 1 aen 

B (I”) = c,, (r)e-‘“n + c_, (r)e-~+-‘-n 

Evidently 

By the Buniakowski inequality 

Since ( j 1 2 = 2 + 2cns (2q j- q,& - lb-d Y hence for f?, + (1 we have 

f B (4 I -s Jf,V h 5 and by the Schwartz lemma 1 B (r) 1 -i_< ijf21/2 1 r / 11 ;‘“I. 
Substituting r = r0 and omitting the subscript by virtue of the arbitrariness of rO, 
we finally obtain 

Similarly we can obtain 

1 C!, (4 / -f- 1 c-9, (4 I 

Owing to the ho~omorphy of function f 
laurin series 

f (I’, ‘P) 

< &fn-’ 1 r / R i’“’ f/l + (!) (12) 

with respect to r t it expands into the Mac- 

(13) 

whose radius of convergence depends on 2’: 

/ r / -=c Re-ill 
(141 

The integral Cauchy formulas determine coefficients a~, for any 9. The cor- 
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responding Cauchy estimate yields for bounded functions 

1 n, ((c) ) < iI13 (v) (+>” 

‘Jr; 

(15) 

Note that MS (‘) < M, = “P 1 f @, 9) I* In this case M, = M, since the cylin- 
der 1 r 1 = R and u = ci i,“;he Shilov boundary of region D, (see [a]). 

Formula (15) shows that ak (q) is a trigonometric polynominal of power not high- 
er than k. It follows from (3) that 

a, (q + n) = (--l)% (q) (16) 

Hence 

Relationship (17) was proved by another method in [4]. 
Properties (8)~(17) extend to arbitrary d’Alambert R- functions. For instance, for- 

mula (8) is trivial when &I1 = 00 ; when M, ( 00 it is established by passing to 
limit R’ -+ R. To obtain an effective inequality when M, = cu it is necessary to 
substitute the smaller number R’ for R and in formula (6), which determines M,, 

takes the upper bound for 1 r ) < R ’ . 
Similar constructions can be obtained with elements z’ = T cos v and y’ = r sin (r- 

In that case regions D, and D, are defined by the inequalities 

Region E, is then a sphere without two planes I x’ 1 ’ $ 1 y’ I2 < R2, x’” + yf2 # 

0 , and region J% is the sphere 1 2’ 1 2 $ I ~‘1 ’ < R2. The region of convergence of 

series (4) and (13) increases 

2]cl<ln 
R” + f/x4 - ) r I1 

Ir12 ’ 

Hence relationships (4)-(17) remain valid, and the estimates may be somewhat 
strengthened. For instance the inequality (15) may be replaced by 

The following are the simplest d’Alambert functions: 1, r”, polynominal in r’, 
and function r2, rl 1L 1 einT which is holonomic in the origin neighbourhood. (The simp- 

lest non-d’Alambert functions are: r, CO.5 ncp. ) D’Alambert functions comprise the 

sum, the difference, the quotient (if the denominator has no roots in D,’ ), and the 
product of d’Alambert functions; the sum of d’Alambert function series locally conver- 
gent in D,’ , and a function of several d’Alambert functions, which is holomorphic in 
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related regions. 
Let us consider the operators 

where the constant in the indefinite integral is selected so as to satisfy condition 
A, (A& = 0. Operators A, transform the set of d’Alambert R- functions into 

itself. For A,, A,; and -‘la this is implied by the equalities 

For A, and A, this follows from their limit max / A& 1 < max 1 f 1 and the 

readily checked formula (3), and for A a from the possibility of integrating series (4) 

term by term. The norm of operator A, is bounded 

ma., 1 ,16f 1 < + m;; 1 f - &f / k 3 yx I f I 
2 

which directly follows from the Northcott inequality [S], which was proved for real func- 
tions. Extension to the complex case is trivial. 

Example 1. The expression for the polar angle 0 in terms of eccentricity angle 

cp is elementary 

1 -r/P V 
r! = Cp + i ln 1 ~_ re-ip I 

?-= 1+~/1-v2 

where v is the eccentricity. It is obvious that (J - v ~ 1 is a d’Alambert function for 

whose Fourier expansion coefficients from (9) we have 

In reality (see [S]) we have here an identity with respect to r 
Example 2. The Cartesian coordinates X1, X2. XZ in elliptic motion can 

be expressed in terms of Keplerian coordinates as follows: 
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where and in what follows a is the major semiaxis, i, is the mean longitude, CF and 
1 are the eccentric and mean polar angles, r~ is the sine of half-obliquity, rz is the 

eccentricity, ‘Fr is the longitude of the ascending node, and ‘Pe is the longitude of the 

pericenter. We consider a, a, rl. vI, r2. ‘PZ to be independent elements. Obviously r3n 

is a d*Alambert I- function of r?. and 1 ~3 1 ’ < 1 r, I2 / 2. 

It was proved in [‘I] that for any fixed b > 1 the function CG - 1 of three vari- 
ables a, r2. and (p2 is holomorphic when 

I r2 I e ‘1mw21 < 1 / ch b, l~rna(<b-t 

and in that region / Im (9 - 1) I < 1. 
Thus for any a E C and 1 in the band ( Im h I < b - 1 the coordinates xr. X2, 

x3 are bounded holomorphic I- and (1 / ch b)- d’Alambert function with respect to 

rl and ‘pl and rz and ‘pz , respectively. 
In the smaller region that does not contain collision points the Hamiltonian and the 

perturbing function of the n -body problem are d*Alambert functions with respect to the 

pairs (rri;, %k) and Pzk, WA. where k is the number of the planet. 
Note that holomorphy with respect to eccentricity and real remaining variables is 

guaranteed in circle ( r2 1 < 1 / ch 1 = 0.648054 7 which lies inside the Laplace circle 
I r2 I < 0.662743. According to [7] the Laplace limit is reached only when the struc- 

ture of the specified region of d’ Alambert functions is complex: to restrict it to the Rein- 

hart region (see [31) is not possible. 
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